Let the position vectors of points (P, Q, R) and (S) be as given below. Which statement is true?
JEE Advanced medium Year: 2023 Maths
Let the position vectors of points \(P, Q, R\) and \(S\) be
\[
\vec a = \hat i + 2\hat j - 5\hat k,\quad
\vec b = 3\hat i + 6\hat j + 3\hat k,\quad
\vec c = \frac{17}{5}\hat i + \frac{16}{5}\hat j + 7\hat k,\quad
\vec d = 2\hat i + \hat j + \hat k.
\]
Then which of the following statements is true?
(A) The points \(P, Q, R, S\) are not coplanar.
(B) \(\displaystyle \frac{\vec b + 2\vec d}{3}\) divides \(PR\) internally in the ratio \(5:4\).
(C) \(\displaystyle \frac{\vec b + 2\vec d}{3}\) divides \(PR\) ernally in the ratio \(5:4\).
(D) The square of magnitude of \(\vec b \times \vec d\) is \(95\).
Solution
Coplanarity.
\[
\vec{PQ}=\vec{b}-\vec{a}=\langle 2,4,8
angle,\quad
\vec{PR}=\vec{c}-\vec{a}=leftlangle \frac{12}{5}, \frac{6}{5},12
ight
angle,\quad
\vec{PS}=\vec{d}-\vec{a}=\langle 1,-1,6
angle.
\]
\[
[\vec{PQ},\vec{PR},\vec{PS}] = 0 ;\Rightarrow; \mathrm{coplanar} ;\Rightarrow; \mathrm{(A) false}.
\]
Division.
\[
\frac{\vec{b}+2\vec{d}}{3}=\frac{(3,6,3)+2(2,1,1)}{3}
=\Big( \frac{7}{3}, \frac{8}{3}, \frac{5}{3}\Big).
\]
\[
\mathrm{Point dividing } PR \mathrm{ internally in } 5{:}4 \mathrm{ from } P:;
\vec{X}=\frac{5\vec{r}+4\vec{p}}{9}=\frac{5\vec{c}+4\vec{a}}{9}
=\Big( \frac{7}{3}, \frac{8}{3}, \frac{5}{3}\Big).
\]
Hence (B) true and (C) false.
Cross product.
\[
\vec{b} imes\vec{d}=
egin{vmatrix}
\hat{i}&\hat{j}&\hat{k}\
3&6&3\
2&1&1
\end{vmatrix}=(3,3,-9),\qquad
lVert \vec{b} imes\vec{d}
Vert^2=3^2+3^2+(-9)^2=99
eq95.
\]
Therefore only (B) is correct.